

Formelsammlung Physik

Ergänzungsprüfung

Grundgrössen der Physik (SI-Normen)

Basisgrösse	SI-Basiseinheit
Länge <i>l</i> , Strecke s	Der Meter (m)
Masse m	Das Kilogramm (kg)
Zeit <i>t</i>	Die Sekunde (s)
Elektrischer Strom I	Das Ampere (A)
Temperatur T	Das Kelvin (K)
Stoffmenge n	Das Mol (mol)

Vorsilben für dezimale Vielfache und Teile

Fakto	r	Vorsilbe	Faktoı	•	Vorsilbe
10	10 ¹	Deka (da)	1/10	10 ⁻¹	Dezi (d)
100	10 ²	Hekto (h)	1/100	10-2	Zenti (c)
1 000	10 ³	Kilo (k)	1/1 000	10 ⁻³	Milli (m)
1 000 000	10 ⁶	Mega (M)	1/1 000 000	10-6	Mikro (μ)
	10 ⁹	Giga (G)		10-9	Nano (n)
	10 ¹²	Tera (T)		10-12	Piko (p)

Kräfte			
Grundgesetz der Mechanik (2. Newtonsches Prinzip)	$F = m \cdot a$ («Beschleunigungskraft»)	[F] = 1 N = 1 kg·m/s ²	
Gewichtskraft	$F_G = m \cdot g$	[g] = 1 N/kg = 1 m/s ² , g: Ortsfaktor oder Fallbeschleunigung g (in Paris) = 9.81 N/kg	
Federkraft		[D] = 1 N/m D heisst Federkonstante ∆s: Verlängerung der Feder	
(Druck)	$p = \frac{F}{A}$	[p] = 1 N/m ² = 1 Pa (Pascal) (1 bar = 100'000 Pa)	

Bewegung		
Geschwindigkeit	$v = \frac{\Delta s}{\Delta t}$	[v] = 1 m/s (= 3.6 km/h)
Gleichförmige Bewegung	$s = v \cdot t$, $v = konstant$	
Gleichmässig beschleunigte Bewegung	$v = a \cdot t$ $s = \frac{1}{2} \cdot a \cdot t^{2}$ $s = \frac{v_{End}^{2}}{2a}$	[a] = 1 m/s²; v _{end} ist die Endgeschwindigkeit
Freier Fall	a = g; $s = h$ (Höhe)	

Arbeit + Energie			
Die mechanische Arbeit	$W = F \cdot s = \Delta E$	[W]= 1 Nm = 1 J (Joule) (1 cal = 4.19 J)	
Potentielle / Lage- Energie	$E_{pot} = F_{G} \cdot \Delta h = m \cdot g \cdot \Delta h$		
Kinetische / Bewegungs- Energie	$E_{kin} = \frac{1}{2} \mathbf{m} \cdot \mathbf{v}^2$		
Spann- / Elastische Energie	$E_{\text{spann}} = \frac{1}{2} D \cdot (\Delta s)^2$		
Die Leistung	$P = \frac{W}{t} = \frac{\Delta E}{t}$	[P]= 1 J/s = 1 W (Watt) (1 PS = 736 W)	

Optik			
Abbildungsmassstab A	$A = \frac{B}{G} = \frac{b}{g} = \frac{b-f}{f} = \frac{f}{g-f}$	B = Bildgrösse; G = Gegenstandsgrösse	
Linsengesetz	$\frac{1}{f} = \frac{1}{g} + \frac{1}{b}$	b = Bildweite g = Gegenstandsweite f = Brennweite	

Elektrizität			
Elektrische Ladung	Q	[Q] = 1 C (Coulomb) Elementarladung e = 1.602 · 10 ⁻¹⁹ C	
Die elektrische Stromstärke	$I = \frac{Q}{t}$	[I] = 1 C/s = 1 A (Ampere)	
Ohm'sches Gesetz	Für Metalle bei konstanter Temperatur ist das Verhältnis U zu I konstant und erhält einen Namen: Widerstand R.		
elektrischer Widerstand	$R = \frac{U}{I}$ und umgeformt: U = R·I	[R]= 1 V/A = 1 Ω (Ohm)	
Kombination von Widerständen			
Serie	$R_{ERSATZ} = R_1 + R_2 + R_3 + + R_N$	Für eine Anzahl von N Wider- ständen	
Parallel	$\frac{1}{R_{ERSATZ}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots + \frac{1}{R_N}$	dito	
Die elektrische Spannung	$U = \frac{W}{Q}$	[U]= 1 J/C = 1 V (Volt)	
Die elektrische Leistung	$P = U \cdot I$	[P]= 1 W (Watt)	
Die elektrische Arbeit	$W = P \cdot t$	[W]= 1 J (Joule)	